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1. Fundamental equations for atmosphere

Diagnostic equation

Prognostic equations

• Momentum equation（three wind components: u, v and w ）

• Continuity equation（pressure: p）
• Thermodynamic equation (temperature: T)

Six variables which describe the state of dry atmosphere:
three velocity components, pressure, temperature and density

In the case of moist atmosphere, preservation of water substances and 
the phase change must be considered (cloud micro-physics).

• State equation (density: ρ)



Momentum equation
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• Momentum equation（three components）

・Newton’s law of motion: （Force）=（mass×acceleration）
→
Navier-Sokes’ equation for fluid：

（acceleration）=（pressure gradient force per unit mass）
(+diffusion+gravity force for vertical direction ）

∂: partial derivative symbol
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• Momentum equation（three components）

・Nwton’s law of motion: （Force）=（mass×acceleration）
→
Navier-Sokes’ equation for fluid：

（acceleration）=（pressure gradient force per unit mass）
(+diffusion+gravity acceleration for vertical direction ）

∂: partial derivative symbol



地軸

Universal 
gravitation

Centrifugal force

Gravity force

Rotating spheroid



Hydrostatic equilibrium
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In case the aspect ratio of the atmospheric motion is much smaller than unity, 
the equation for vertical motion
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can be replaced by hydrostatic equilibrium

This relation equilibrium (balance) of 
forces between vertical pressure 
gradient force and gravity force.

Pressure gradient force

Gravity force

Isobaric plain

high pressure

low pressure

Vertical pressure gradient 
force usually balances with 
the gravity force (hydrostatic 
equilibrium)  

acceleration



Coriolis’ force
Effect of Coriolis’ force is added on the earth
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Earth rotation 

Earth rotation 

North Pole

Low latitude

High latitude

In vector formulation, Coriolis’ force is given by vector product of 
angular velocity of the earth rotation vector Ω and wind vector V:

Northward motion shifts 
eastward in Northern 
hemisphere due to the difference 
of  speeds of earth rotation. 



Continuity equation（law of mass preservation）
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‥local time tendency of density=differences of mass 
flux through surrounding boundaries

Continuity equation

Mass flux (density x wind speed)
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we obtain the continuity equation in advective form:

From the following relationship,  

.. flow dependent time tendency of density is given by local 
convergence



State equation for ideal gasses

i is index to represent gas component such as  nitrogen, oxygen, and 
argon, and md the weigh-average molecular of dry air (28.966 g/mol)

Boyle-Charles’s combined law for ideal gas with a molecular weight of m

R*：universal gas constant (=8.314J/mol/K)
In case of dry air (represented by subscript d),
by Dalton’s law for partial pressure, 

R (=R*/md)：gas constant for dry air (=287.05 J/Kg/K)
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Diagnostic equation for density

（ p0=1000hPa, Cp is the specific heat of dry air in constant pressure; 
7R/2=1004.7J/Kg/K）

State equation for dry air

Using the specific volume α (inverse of density ρ)
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where Cv is the specific heat of dry air in constant volume;
Cv = Cp –R=5R/2=717.6J/Kg/K

If we define the non-dimensional pressure (Exner function) π 
and the potential temperature θ

RTp =α



Pressure-height equation for 
hydrostatic atmosphere

Pressure gradient force

Gravity force

Isobaric plain

high pressure

low pressure

Veridical pressure 
gradient force usually 
balances with the gravity 
force (hydrostatic 
equilibrium)  

acceleration

Applying the state equation to 
hydrostatic equilibrium
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We obtain well-known barometric height formula
(pressure-height equation)



Thermodynamic equation
（Conservation of potential temperature）

αpddIdQ +=

First law of thermodynamics

‥change in the internal energy of a closed system is equal to the amount of 
heat supplied to the system minus the amount of work done by the system on 
its surroundings Let non-adiabatic heating rate Q, 
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‥Conservation law (prognostic equation) of potential temperature



ρa：density of moist air, Tv：virtual temperature, qv: Specific humidity
Virtual potential temperature is defined by replacing temperature by virtual 
temperature in definition of potential temperature

Partial pressure of moist air
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State equation for moist air



Thermodynamic equation for moist air
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First law of thermodynamics for moist air is given by 

The difference between θ and θmoist is less than 0.1K, and can be ignored as 
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where r is the mixing ratio. 
Likewise, specific heat of moist air in constant volume is 
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Specific heat of water vapor in constant pressure Cpv =1854J/Kg/K
Specific heat of water vapor in constant volume Cvv =Cpv –R*/mv=1390J/Kg/K

Potential temperature of moist air may be modified as  



Transport of water vapor
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‥local tie tendency of q =advection + moisture source

Combining with the continuity equation, 
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Flux form equation

M
z
wq

y
vq

x
uq

t
q ρ

∂
∂ρ

∂
∂ρ

∂
∂ρ

∂
∂ρ

=+++



where

From state equation, perturbation of density can be divided into the
following two terms:

Perturbation of the density
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2. Waves in mesoscale atmosphere
Starting from the following 2-dimensional basic equations, we derivate 
three wave solutions in mesoscale atmosphere.
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If we linearize the equation (1)-(3) by
u=u’, w=w’, θ= θ + θ’, ρ=ρ0+ ρ‘

The system becomes 

Time tendency of the density is replaced by the pressure tendency as  
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Since phase speed normal to wave plain is 
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Cs means the sound wave speed

Assuming the solution of p’ as
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Relationships between the wave number and wave length and phase speed:



If we linearize the equation (1)-(3) by
u=u’, w=w’, θ= θ + θ’, ρ=ρ0+ ρ‘

The system becomes 

2) Gravity waves
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where
b’=gθ’/θ :      buoyancy
N2=g/θ×dθ/dz : Brunt-Visala’s frequency

σ =0 for hydrostatic, σ =1 for a nonhydrostatic system



Eliminating u’  from (A.1’) and (A.3’), and eliminating b’ from 
(A.2’) and (A.4’), we obtain the following equations for p’ and w’
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Further eliminating p’ we obtain the following elliptic equation for w’
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If we assume solution of w’ as 
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Relationships between the wave number and wave length and phase speed are:

Dispersion relation for gravitiy waves is  
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In hydrostatic system (σ=0 or m>>k), 

ω=kN/m, Cx= N/m

Phase speed for horizontal direction is independent from the wave number, 
thus hydrostatic gravity waves do not have dispersibility horizontally.  

In nonhydrostatic case (σ=1 and m～k), 

ω becomes smaller than N. 

In the limit of k=∞, ( in case of vertical motion only)
magnitude of ω becomes N



Steady state linear mountain wave is a special case where upward phase
velocity of internal gravity wave is in equilibrium with the ambient wind U.

If we linearize the equation (1)-(3) by

u=U+u’, w=w’, θ= θ + θ’, ρ=ρ0
and assuming the steady state (time tendency is zero), the system becomes 

3) Mountain waves

)4(0''

)3(0''

)2('''

'

2

0

0

1

0'1 )1(

BNw
x
bU

B
z
w

x
u

Bb
z
p

t
wU

x
uU B

x
p

=+

=+

=+

+ =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂σ

∂
∂

ρ

∂
∂

ρ



Eliminating u’  from (B1) and (B3), and b’ from (B2) and (B4), we 
obtain the following equations for p’ and w’
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Further eliminating p’ we obtain the following elliptic equation for w’
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If we assume solution of w’ as in (A.8), we obtain the following (famous) 
Long’s (1952) equation:  
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where l=N/U is the scorer parameter. 



In hydrostatic system (σ=0 or m>>k), the solution is periodic waves with 
the vertical wave length 2π/l without the dispersibility horizontally.  

In nonhydrostatic case (σ=1 and m～k), characteristic of the solution 
depends on the magnitude relation of l and k.

In case k2 > l2,   
the wave amplitude decreases exponentially in vertical (external wave).

In case k2 < l2,   
the waves become periodic ones with the following vertical wave 

length (internal wave).
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The real solution of mountain waves can be obtained by superposition of 
several waves with the corresponding wave numbers.



In case of 3-dimensional mountain waves, the set of equation becomes

3’) Three dimensional mountain waves
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Example of linear mountain waves over a 3-dimensional ax-symmetric bell-shaped mountain 
(h=100 m) in the stable atmosphere (dθ/dz=3 K/km) of U=8m/s. 
Upper)  hydrostatic case (half width a = 6 km), Lower) nonhydrostatic case a = 1.2 km
Left) Vertical cross-section through mountain top,  Right) Horizontal plain at 2.44 km AGL. 



3. Classification of nonhydrostatic models 
1) classification by the continuity equation

Basic equations

)4.1(,

)3.1(,

)2.1(,

)1.1(,1

RTp
C
Q

td
d

td
d

gp
td

d

P

ρ
π

θ

ρρ
ρ

=

=

⋅∇−=

−∇−=

v

kv



a. Anelastic model

)14.1(,0)(

)13.1(,''

=⋅∇

−=∇++
∂

∂

v

kAdvv

ρ

ρρ gp
t

Substituting the reference density in the momentum and continuity 
equations, we obtain  governing equations of the anelastic model
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The anelastc (AE) model removes sound waves from solutions by a 
scale analysis. Field variables are divided into the time independent 
horizontal uniform reference state f (z) and its perturbation f' (x, y, z, t)
as
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of potential temperature and pressure as 
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Momentum equation may be rewritten as 



b. Quasi compressible model
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The quasi-compressible model considers the compressibility of air and 
predicts the pressure from divergence, while the reference density is used 
for momentum equations. 
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pressure equation is given by 
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Momentum equation is same as in the anelastic equation; (1.16).



c. Fully compressible model
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The fully compressible model uses basic equations without the 
linearization by the reference atmosphere

Since the fully compressible model includes sound waves in its solutions and 
allows the time change of the density, careful attention must be paid on 
computation of sound waves and computational accuracy in the finite 
discretization. 



Table 1. Classification of nonhydrostatic models and their behaviors. 

Adiabatic expansion Constant volume 
heating 

Constant pressure 
heating

Classification Pressure Density Volume Pressure Density Volume Density
Anelastic (AE) impossible invariant invariant invariant invariant
Quasi-compressible without 
the thermal expansion term

decrease invariant increase invariant invariant invariant invariant

Quasi-compressible with 
the thermal expansion term

decrease invariant increase increase invariant increase invariant

Fully-compressible without 
the thermal expansion term

decrease decrease increase invariant decrease invariant decrease

Fully-compressible with the 
thermal expansion term

decrease decrease increase increase invariant increase decrease
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2) treatment of sound waves

a. AE scheme
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Nonhydrostatic models can be classified further by the treatment of 
sound waves. 

Taking total divergence of momentum equations, the following 3-
dimensional Poisson-type pressure diagnostic equation is obtained.  

where P=p’, and h=g/Cs
2 , and r.h.s. is the forcing term by 

divergence of advection and buoyancy terms. 
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Here, the last term of r.h.s. (DIV) is the divergence at the time step t-∆t, 
which is required for computational stability to adjust the divergence zero at 
next time step (Clark, 1977).  



b. HE-VI scheme
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The HE-VI (horizontally explicit vertically implicit) scheme treats sound 
waves implicitly only for the vertical direction. This scheme is often 
referred as the split-explicit method because sound waves are treated in a 
short time step ∆τ while low frequency modes and physical processes are 
treated in a long time step ∆t. 

Following 1-dimensional Helmholtz pressure equation is obtained 

The pressure equation (1.44) is formally similar to the pressure 
equation of the HI-VI scheme (1.36) except the Laplacian in the 
pressure equation is vertically 1-dimensional. 
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For example, if we define time tendency term of A as 

Momentum equations and the pressure equations may be written as 
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c. HI-VI scheme
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The HI-VI (horizontally implicit vertically implicit) scheme treats sound 
waves implicitly for both vertical and horizontal directions. This scheme, 
often referred as the semi-implicit method. 
The following 3-dimensional Helmholtz-type pressure equation is used
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where P’ is defined by  

Above pressure equation (1.36) is formally similar to the anelastic 
pressure equation (1.25). 
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For example, if we define time tendency term of A as 

Momentum equations and the pressure equations may be written as 
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If we define ∆2 as an operator

Momentum equations and the pressure equations (1.26’’)
～(1.29’’)may be written as
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We obtain the following elliptic tendency equation for ∆2P
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and FU’,FV’,FW’,FP’ are r.h.s. of (1.43)～(1.46), respectively. 

where



2.4. Characteristics in three methods

Method
Accuracy Comput

ational 
robust-

ness

Pressure 
equation

Scalability 
in parallel 
computati

on

Efficiency 
in large 

scale 
computati

on

Compatibi
lity with 

semi-
Lagrangia
n scheme

Compatibi
lity with 
spectral 
method

AE Anelastic
approxi-
mation

Good 3D 
Poisson

Depends 
on elliptic 

solver

Depends 
on elliptic 

solver

Good Good

HI-VI Good Fair 3D 
Helmholtz

Depends 
on elliptic 

solver

Depends 
on elliptic 

solver

Good Good

HE-VI Good Fair 1D 
Helmholtz

Good Good Sound 
waves 
exist

Fair



4. Numerics of JMA-NHM 
Basic Equations

,,, 3
2

2
1

1 dzds
m
dds

m
dds ===

ηξ

The governing basic equations of the model consist of the flux form 
equations on the spherical curvilinear orthogonal coordinate. 
Let m1 and m2 be the map factors in the ξ (x) and η (y) directions, 
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Momentum equation is
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Change of unit vectors along each coordinates are

an
jk

am
ik

an
k

n
mij

m
nij

n
mji

am
k

m
nji

1,1

,1)1(),1(

),1(,1)1(

−=
∂
∂

−=
∂
∂

−
∂
∂

−=
∂
∂

∂
∂

=
∂
∂

∂
∂

=
∂
∂

−
∂
∂

−=
∂
∂

ηξ

ξηηξ

ξηηξ

where a is radius of earth. 
Curvature term is

a
vuk

a
wvj

n
v

m
umnuj

a
wui

n
v

m
umnvi

knvkmuwjnvjmuvinvimuuM

22

)}1()1({

)}1()1({

)()()(

+
−+

∂
∂

+
∂
∂

−+

+
∂
∂

−
∂
∂

=

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=

ξη

ξη

ηξηξηξ



a
w

z
w

m
v

n
umn

z
w

a
w

n
mnuvn

a
w

m
mnvum

z
wkwiunjvnkwjvmium

wkvjui
z

knjmiV

V
dt
d

2)}()({

)1()1(

)()(

))((

0

+
∂
∂

+
∂
∂

+
∂
∂

=

∂
∂

++
∂
∂

+
∂
∂

++
∂
∂

+
∂
∂

=

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=

++
∂
∂

+
∂
∂

+
∂
∂

=∇

=∇+

ηξ

ξηηξ

ηηηξξξ

ηξ

ρρ

Continuity equation is



Conformal projections

,1

,1

,1

333

222

111

Difg
z
pCrvCor

dt
dw

Dif
y
pmCrvCor

dt
dv

Dif
x
pmCrvCor

dt
du

+−−+=

+−+=

+−+=

∂
∂

ρ

∂
∂

ρ

∂
∂

ρ

where

Set n=m in the curvilinear orthogonal coordinates equations , 
and notate ξ, η by x, y, 
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2) Lambert-conformal projection
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3）Mercator projection
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Flux form equation
Continuity equation was
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If we neglect the last term of l.h.s. of (2.40)by shallow assumption, we
obtain
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From (2.42)
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For arbitrary variable φ, from (2.41)

or



Terms Adv.U, Adv.V, Adv.W：replace φ by u, v, w in
Terms Crv.U, Crv.V, Crv.W , Cor.U, Cor.V, Cor.W：multiply ρ/m to the
terms of the equations in conformal projection
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Prognostic equation for potential temperature is

where
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underlined term is divergence. 



Pressure equation
From state equation

Here、Cm is the sound wave speed in case no liquid water 

Combining continuity equation 

Pressure equation is 
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c) Time-splitting of advection term
In order to enhance the computational robustness, advection terms of 
momentum and potential temperature are split at small time step

At the center of the Leapfrog time step, high-order advection terms are fully 
evaluated with the flux correction, and then second-order components are 
adjusted at each short time steps in the later half of the Leapfrog time 
integration 

τADVLktADVLktADVADV +−= )()(

small time step
∆τ

large time step 2∆t

ADV(kt)

kt-1 (ns-1)/2+1 ns-1

Advection terms are fully evaluated by higher order difference with flux correction
∆t = 40sec for 10km model; corresponds to ∆t = 80 sec in RK2

Modified by lower order advection components
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Time splitting of gravity waves

The tendency term in (19) is given by a tentative time integration in the 
cloud microphysical process. 



Test of 3-D Linear Mountain waves
Uniform atmosphere with U=10m/s, N＝0.02/s
Bell-shaped mountain h=100m、a=30km with horizontal resolution 10km

Cross-section of vertical velocity without time-splitting of advection. 
Left）∆t=30sec, t=10 hrs. Contour interval is 0.5 cm/s. 
Center） ∆t=40sec、t=2 hrs. Contour interval is1cm/s
Right）∆t=50sec, t=10 hrs. Contour interval is 0.5 cm/s. With time-splitting of advection. 
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Case of 9 April 2001, 06UTC initial 
Gravity waves sometimes become unstable when an inversion layer 
exists in strong wind environment. 
Vertical cross-section of 3 hrs forecast of NHM with  ∆x=10km. 
9 April 2001, 06UTC initial , ∆t=40 sec.
Potential temperature and  vertical wind.

Without time-splitting of advection With time-splitting of advection



d) Divergence damping
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Based on the idea of Wicker and Skamarock (1992), 
while acts on the flux form total divergence 

where
αH=0.06* (∆x)2/∆τ
αZ((kz)=0.05* (∆z(kz))2/∆τ



e) Direct evaluation of buoyancy 
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σ=0: density perturbation,  σ=1: potential temperature perturbation
vertical momentum equation

In case of σ = 0 , BUOY includes pressure perturbation, which has to be 
treated implicitly.

The buoyancy term BUOY is defined by



Implicit treatment
Independent of σ, pressure perturbation term is treated implicitly as
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To split gravity waves, diagnosis of density is required in each short time step. 
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The last term in r.h.s. is evaluated in short time step. 
Upper and lower boundary condition of pressure equation is 



Cloud Microphysics
• Typical prognostic variables

– water vapor, cloud water, rain, 
cloud ice, and graupel (Qv, 
Qc, Qr, Qi, Qs, Qg)

– number density of cloud ice, 
snow and graupel (Ni, Ns, 
Ng)

graupelrain

snow

cloud icecloud water

water vapor

Tetens’ formula for 
saturated vapor pressure [hPa]

t
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1011.6



In bulk method, the size distribution function of water substance is 
expressed by the inverse exponential function of  the particle diameter D.  

Bulk cloud microphysics

DeNDN λ−= 0)(
Fall-out terminal velocity of 
particle is given as a power 
function of  D by the 
Stokes’  law in the form of

baDDV =)(



Bulk cloud microphysics
The mass-weighted mean velocity is obtained by

Here Γ(z) is the Gamma function
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