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1. Fundamental equations for atmosphere

Six variables which describe the state of dry atmosphere:
three velocity components, pressure, temperature and density

e Momentum equation (three wind components: u, vand w )
« Continuity equation (pressure: p)
e Thermodynamic equation (temperature: T)

o State equation (density: p)

In the case of moist atmosphere, preservation of water substances and
the phase change must be considered (cloud micro-physics).



Momentum equation

« Momentum equation (three components)

du 1D ity
dt p Ix o: partial derivative symbol

ﬂ+£@: dif .v
dt pJdy

- Newton’s law of motion: (Force)=(mass X acceleration)

—

Navier-Sokes’ equation for fluid:
(acceleration)|=|(pressure gradient force per unit mass)

(+diffusion+gravity force for vertical direction )




Momentum equation

e Momentum

equation (three components)

du| |1l & |

.I_
dt | [p OX

av | |11 &
dt [|pay]
dw| |1 &
dt||p oz

- dif .u
0. partial derivative symbol

dif .v

+g =dif.w

-Nwton’s law of motion: (Force)=(mass X acceleration)

—

Navier-Sokes’ equation for fluid:

(acceleration)|=|(pressure gradient force per unit mass)

(+diffusion+gravity acceleration for vertical direction )



Universal .
gravitation

Gravity force

Rotating spheroid



Hydrostatic equilibrium

In case the aspect ratio of the atmospheric motion is much smaller than unity,
the equation for vertical motion

7

low pressure
dw 1 :
dt o, Ol . Isobaric plain

Pressure gradient force

acceleration
Gravity force

can be replaced by hydrostatic equilibrium

i@_'_ g -0 high pressure
yoReui
_ _ - Vertical pressure gradient
This relation equilibrium (balance) of force usually balances with
forces between vertical pressure the gravity force (hydrostatic

gradient force and gravity force. equilibrium)



Coriolis’ force

Effect of Coriolis’ force i1s added on the earth

Northward motion shifts
eastward in Northern
hemisphere due to the difference
of speeds of earth rotation.

North Pole
High latitude
Earth rotation

Low latitude ™ | :
Earth rotation
In vector formulation, Coriolis’ force Is given by vector product of
angular velocity of the earth rotation vector £2and wind vector V.
Y T
av =(-2QxV)—-—Vp+g+F,
dt yo,



Continuity equation
Continuity equation (law of mass preservation)

o”p+§pu+§pv+§pwzo
ot ox oJy 0z

- -local time tendency of density=differences of mass
flux through surrounding boundaries

Mass flux (density x wind speed)

|
o =




From the following relationship,

Of)'0+u5'0+v@+wﬁ—+,o('0u d éw)
ot ox oY 01 ox o0y 012

we obtain the continuity equation in advective form:

1dp+8u N aw
p dt  Ox &y 01

=0

.. flow dependent time tendency of density is given by local
convergence



State equation for ideal gasses

Boyle-Charles’s combined law for ideal gas with a molecular weight of m
M R*

PP =y T

R* : universal gas constant (=8.314J/mol/K)
In case of dry air (represented by subscript d),
by Dalton’s law for partial pressure,

2 M

R* M, R*_%
=Y p =—T = T =p RT
b =Xp =TI T T,

| IS Index to represent gas component such as nitrogen, oxygen, and
argon, and m, the weigh-average molecular of dry air (28.966 g/mol)

2M,

> M

R (=R*/m) : gas constant for dry air (=287.05 J/Kg/K)

My




Diagnostic equation for density

State equation for dry air
p=pRT

Using the specific volume a (inverse of density p)
pa =RT

If we define the non-dimensional pressure (Exner function) =

and the potential temperature &
P R/C T
T = (—) P 1 0=—

T
0

( pp=1000hPa, C, is the specific heat of dry air in constant pressure;
7R/2=1004. 7J/Kg/K)

C /C

p—()"

where C, is the speufic heat of dry air in constant volume;
C, = C, -R=5R/2=717.6J/Kg/K



Pressure-height equation for
hydrostatic atmosphere

Applying the state equation to

hydrostatic equilibrium low pressure |
Pressure gradient force
1 d Isoba_lr_ifz_glain
—d—p+ g=0 e ;
7 Gravity force
P y
1 dp g high pressure
p dz RT o
Veridical pressure
g gradient force usually
— — (| gp)=— balances with the gravity
RT force (hydrostatic
gz equilibrium)

S RT
P= Py€
We obtain well-known barometric height formula
(pressure-height equation)



Thermodynamic equation
(Conservation of potential temperature)
First law of thermodynamics

dQ = dI + pda

- -change in the internal energy of a closed system is equal to the amount of
heat supplied to the system minus the amount of work done by the system on
Its surroundings Let non-adiabatic heating rate Q,

Qdt =C,dT + pde = (C, + R)dT —adp

_C, 6
Cp
.+ pa =RT, adp :R—g”d(poﬂ) —C aix
Thus,
do O

dt Com

- -Conservation law (prognostic equation) of potential temperature



State equation for moist air

Partial pressure of moist air

p=p +p =( d+MV)R*T=(I\/I +
d Y m m V d

Vv Vv

_ Ro_
=M, +1.61M )0 T=(p, +1.61p )RT

M m
v d

R
AR §
)v

=(p, +0.61p )RT=p (1+0.619 )RT=p RT,

P, : density of moist air, T, : virtual temperature, q,: Specific humidity
Virtual potential temperature is defined by replacing temperature by virtual
temperature in definition of potential temperature

5 T _ (1+061g)T

v
T T

= (1+0.61q,)6



Thermodynamic equation for moist air

Specific heat of water vapor in constant pressure C,, =1854J/Kg/K
Specific heat of water vapor in constant volume C,, =C,, —-R*/m,=1390J/Kg/K

First law of thermodynamics for moist air is given by

C +rC
dQ = ( pl o) dT =C_(1+0.85q,)dT
+r
where r is the mixing ratio.

Likewise, specific heat of moist air in constant volume is
_ (G, +rC,)

C. ~C,(1+0.94q,)

: 1+r L .
Potential temperature of moist air may be modified as
R(1+061q )

R
—(1 0.24q )
c C (1+0.85q )

Ornoist =TC) ™+ =T+ =T (P

The difference between gand Qmoist Is less than 0.1K, and can be ignored as

_Op p
aR6,()

0



Flux form equation

Transport of water vapor
4 a4 A A

—+U—+V—F+Ww—=M
ot ox oY 01

- -local tie tendency of g =advection + moisture source

Combining with the continuity equation,

é’p+ﬁpu+@pv+é’pwzo
ot ox oy 0z

We obtain the following flux form equation,

apd |, opuq | opva |, Gpwg _ M
ot OX oy 0l




Perturbation of the density

From state equation, perturbation of density can be divided into the
following two terms:

. P P
p—(Rg){ ( ) }

Cy Cy
_Po €y Po G, P\c, ﬁ
( ) (- ) ROC, ( ) >
:_pﬁwﬁﬂz _pﬁ+i (A11)

6 "C,p 6 C.°
where

C
C. = C—pRT (A.12)

Y

Since potential temperature is invariant for total derivation,

d_p:CSZd_p
dt dt



2. Waves In mesoscale atmosphere

Starting from the following 2-dimensional basic equations, we derivate
three wave solutions in mesoscale atmosphere.

d_u:_iﬁ (1)
dt 0 X

dw 1

W__ 2D 2
Y g (2
P LIP3
a & a

L (@



1) Sound waves
If we linearize the equation (1)-(3) by
u=u’, w=w’, =0+ 6, p=p,+p’
The system becomes

AL 1D o (a1

ét Po X

s 1P g (a2
o’t Po
ap' A’ O’W
——+ 0(A3
P py (G + ) =0(A3)

Time tendency of the density is replaced by the pressure tendency as

%ws po(? a"’) 0(A13)




Eliminating u” and w’ from (A.1”),(A.2”"),(A.13), we obtain
o’p' (ﬁzp o p'
A’ ox*  01°

Assuming the solution of p’ as
p'= Aexp{i(kx+mz—wt)} (A8

)=0 (A.14)

We obtain the following dispersion relation:
a)Z—CSZ(k2+m2):O (A.15)
Relationships between the wave number and wave length and phase speed:

L R A W

T T K m N T
Since phase speed normal to wave plain is
0
C= =C

Vk? +m?

Cs means the sound wave speed

A




2) Gravity waves

If we linearize the equation (1)-(3) by
u=u’, w=w’, =0+ 6, p=p,+p’
The system becomes

AL 1D, (AT)
A Po X

s 1Py (A2)
A P

where
b’=g6’/6:  buoyancy
N?=g/@ xdd/dz : Brunt-Visala’s frequency

0 =0 for hydrostatic, 0 =1 for a nonhydrostatic system



Eliminating u” from (A.1’) and (A.3’), and eliminating b’ from
(A.2’) and (A.4’), we obtain the following equations for p’ and w’

2 as 2 Al
ﬁw_lﬁzpzo (A5)
At ,0003(
2 af 2 Al
aﬁ \2N+ LI WN? =0 (A.6)
A Po AL

Further eliminating p’ we obtain the following elliptic equation for w’

O0° O'W W W'
? O @(2 + &2 )+N2 @(2 :O(A7)




If we assume solution of w’ as

w'= Aexp{i(kx + mz — wt)} (A.8)
Relationships between the wave number and wave length and phase speed are:
27T @ 27T @
ﬂ.x :?’CX :?,ﬁyz :H,CZ :E
Ae—2f O (A.9)

Vk? + m? Vk? + m?
Dispersion relation for gravitiy waves Is

2N\ 2
W’ = okk2 Tmz (A.10)




In hydrostatic system (o=0 or m>>k),
o=kN/m, C = N/m

Phase speed for horizontal direction is independent from the wave number,
thus hydrostatic gravity waves do not have dispersibility horizontally.

In nonhydrostatic case (o=1 and m ~k),
@ becomes smaller than N.

In the limit of k=0, (In case of vertical motion only)
magnitude of @ becomes N



3) Mountain waves

Steady state linear mountain wave is a special case where upward phase
velocity of internal gravity wave is in equilibrium with the ambient wind U.

If we linearize the equation (1)-(3) by
u=U+u’, w=w’, 6=0 + ¢, p=p,
and assuming the steady state (time tendency Is zero), the system becomes

UéU + 1P (B1)

X Py K

U N 1Py (B2
A P

A N _y (B3

X a

ml

UL +wN?=0 (B4)

R



Eliminating u” from (B1) and (B3), and b’ from (B2) and (B4), we
obtain the following equations for p’ and w’

UMW _ 1P _y (B
L P, X

0§W+U Al +W'N*=0 (B.6)
X Po XA

Further eliminating p’ we obtain the following elliptic equation for w’

, a”zw' W ,
U?(o 2 522) +N2w'=0 (B.7)
If we assume solution of w’ as in (A.8), we obtain the following (famous)
Long’s (1952) equation:
o'W
2
where I=N/U is the scorer parameter.

+(I2—ck?)w=0 (B.8)




In hydrostatic system (o=0 or m>>k), the solution is periodic waves with
the vertical wave length 27/| without the dispersibility horizontally.

In nonhydrostatic case (o=1 and m ~k), characteristic of the solution
depends on the magnitude relation of | and k.

In case k? > |2,
the wave amplitude decreases exponentially in vertical (external wave).

In case k2 < 12,
the waves become periodic ones with the following vertical wave
length (internal wave).

i=2% _0o (BY

The real solution of mountain waves can be obtained by superposition of
several waves with the corresponding wave numbers.



3’) Three dimensional mountain waves

In case of 3-dimensional mountain waves, the set of equation becomes

Uéu+15p'=o (Bl
XK Po K
Ua/+15p' 0 (B1)
X PN
AN L1 (B2
A P A
0’U+0’V+dN:O (B3')
X & A
UP L wN?=0 (B4)
X

and the resultant equation for w’ becomes

é’W ﬁw O°W &w &w
+ N?
a’yZ) }] ( a”y

{( )=0 (B.7))
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Example of linear mountain waves over a 3-dimensional ax-symmetric bell-shaped mountain
(h=100 m) in the stable atmosphere (d6/dz=3 K/km) of U=8m/s.

Upper) hydrostatic case (half width a = 6 km), Lower) nonhydrostatic case a = 1.2 km

Left) Vertical cross-section through mountain top, Right) Horizontal plain at 2.44 km AGL.



3. Classification of nonhydrostatic models
1) classification by the continuity equation

Basic equations

& Ivpogk @
dt 0

Y__ v @12
a2 |
10_0Q = a3

dt C,x

D= pRT, (L4)



a. Anelastic model

The anelastc (AE) model removes sound waves from solutions by a
scale analysis. Field variables are divided into the time independent
horizontal uniform reference state f (z) and its perturbation f' (x, y, z, t)
as

P=p+p,p=p+p.0=0+6" (1.12)

Substituting the reference density in the momentum and continuity
equations, we obtain governing equations of the anelastic model

aaLtV+Adv+Vp':—p'gk, (1.13)

V-(pv) =0, (1.14)



Momentum equation may be rewritten as

opv +Adv+Vp+lgk 59 gk, (1.16)
ot C 2 0

S

Because the density perturbation can be divided into the perturbation
of potential temperature and pressure as

C,

(—) { ( ) '}
pO C:n_e Vv Cp_1
(—) " ( 92) R@C( Pye oy
__ 0. cap_ ¢ L
=P pCp ) p9+C82 (1.15)



b. Quasi compressible model

The quasi-compressible model considers the compressibility of air and
predicts the pressure from divergence, while the reference density is used
for momentum equations.

%—‘t’ +V-(pv) =0. (1.20)
Using the relation of . QJF 0
PPy e
following pressure equation is obtained
M i —n pOO
—=-C.{V- -=—}4 1.21
= s {V-(pv) - at} (1.21)

If the Exner function is used to represent the pressure, the
pressure equation is given by

2
9z __RZ y.vy+ S99 (1.21)
dt C c g dt

Vv

p

Momentum equation Is same as in the anelastic equation; (1.16).



c. Fully compressible model

The fully compressible model uses basic equations without the
linearization by the reference atmosphere

7 —in -gk, (1.1
dt Jo,

do
—=—pV -V, 1.2
e (1.2)

p=pRT, (14)

Since the fully compressible model includes sound waves in its solutions and
allows the time change of the density, careful attention must be paid on
computation of sound waves and computational accuracy in the finite
discretization.



Table 1. Classification of nonhydrostatic models and their behaviors.

Adiabatic expansion Constant volume Constant pressure
heating heating

Classification Pressure | Density | Volume | Pressure | Density | Volume | Density
Anelastic (AE) 1mpossible invariant | invariant | invariant | invariant
Quasi-compressible without | decrease | invariant | increase | invariant | invariant | invariant | invariant
the thermal expansion term
Quasi-compressible with decrease | invariant | increase | increase | invariant | increase | invariant
the thermal expansion term
Fully-compressible without | decrease | decrease | increase | invariant | decrease | invariant | decrease
the thermal expansion term
Fully-compressible with the | decrease | decrease | increase | increase | invariant | increase | decrease
thermal expansion term

0 2 06

R cHv (w)-L%%, @2

S
ot _0 ot

thermal expansion term




2) treatment of sound waves

Nonhydrostatic models can be classified further by the treatment of
sound waves.

a. AE scheme

Taking total divergence of momentum equations, the following 3-
dimensional Poisson-type pressure diagnostic equation Is obtained.

V2P + aﬁ(hp)z FP.AE, (1.25)
yA

where P=p’, and h=g/C.? , and r.h.s. is the forcing term by
divergence of advection and buoyancy terms.

FP.AE=-Z (Dif .pu — Adv.pu)+ < (Dif .pv — Adv.pv)
OX oy

o —0 S — 1
+—(p= g+ Dif.pw— Adv.pw) + — DIV "™ 1.25
pe (p =9 p pW) I (1.25)
Here, the last term of r.h.s. (DIV) is the divergence at the time step t-At,
which is required for computational stability to adjust the divergence zero at
next time step (Clark, 1977).



b. HE-VI scheme

The HE-VI (horizontally explicit vertically implicit) scheme treats sound
waves implicitly only for the vertical direction. This scheme is often
referred as the split-explicit method because sound waves are treated in a
short time step At while low frequency modes and physical processes are
treated in a long time step At.

Following 1-dimensional Helmholtz pressure equation is obtained

2P° &

— o (WP +e'P =FPHE,  (144)

The pressure equation (1.44) is formally similar to the pressure
equation of the HI-VI scheme (1.36) except the Laplacian in the
pressure equation is vertically 1-dimensional.



For example, if we define time tendency term of A as

T+AT AT

5 A A A
AT

Momentum equations and the pressure equations may be written as

(1.34)

P

oU+—=FU (1.26")
g OX

oV +£: FV (1.27")
Ty

5W+(—+—)P”M FW (1.28)
4 0l C

A N éW)HAT

6 P+C.*(
OX o”y 0z

FP.E (1.29")




U™ =U"+Ar(FU —f) (1.35)
OX

VA=V L Ar(FV —f) (1.36)
ay

WA =W+ A{FW — (ﬁ+ %)P”M} (1.37)
S

P™*4"=P" + Ae{FP.E-C, (dJ N dN)”Af} (1.38)
oxX oy 01

Solving for P+t

é’z Z'—i-AT T+ A7 1 T+ AT _
—P —(—P )— —P = FP.HE
01° 2K (CSAr)
FP.HE =— L I:P'E+ Z FW
At C52 0z

Lo, Noyeine W7y 1

+ P’ 1.40
Ar{(ﬁx 2 I~ (C A7)? (1.40)
S

(1.39)



c. HI-VI scheme

The HI-VI (horizontally implicit vertically implicit) scheme treats sound
waves implicitly for both vertical and horizontal directions. This scheme,
often referred as the semi-implicit method.

The following 3-dimensional Helmholtz-type pressure equation is used

vePs L (hP)+eP = FP.HI,  (1.36)
where P’ is defined by o

P'=P'-P!. (L.31)

Above pressure equation (1.36) is formally similar to the anelastic
pressure equation (1.25).



For example, if we define time tendency term of A as
At+At . At—At AZA (At . At—At)
= +
2At 1+a)At (1+a)At

S, A= (1.34°)

where the term —t is weight average of A at z-A¢ and t+A¢

Kt 1';05At+At 1- OCAt —At (1.41)

Momentum equations and the pressure equations may be written as

5U+£ FU  (1.26")
OX

sU + P =FV  (1.27")

t é’y

sW+( 2+ 9B —Fw  (1.28")
¢ 0z C52

6P+ Cz(ﬁU N m) FP.E (1.29")
ox oy 0t




If we define A2 as an operator
AA=A - A (1.42)

Momentum equations and the pressure equations (1.26”)
~(1.29”)may be written as

AU afP_, U -UTY A

- = — (1.43)
l+a)at  Ox l+a)at  Ox
2 2 t\yt-At t
AP, VIV P
l+a)at 2oy Ql+a)at 2y
2 t\pg oAt
AW @y yeppw -V (7, 9 pt (1.45)
l+a)at oz Cg (1+ a)Aat 0z Cq
2 2 2 2
AP Csz(é’AU+é’AV+§AW)

—
(1+ )4t OX oy 0l

t  pt-At t t t
il c:SZ(dJ L9 +a§/\/ ) (1.46)
Z

=FP.E+ +
(1+a) At ox oy




We obtain the following elliptic tendency equation for A%P

ot  o°  0o° 2p g . 1 2
AP+—(——AP) - AP = FP.HI 1.47
(d(z AX° ﬁzz) z(C 2 ) (CsAt)2(1+a)2 (1.47)
S
where
FP.HI :(ﬁU +d:V +d:W )— A (1.48)

ox oy 01" ClEl+a)t

and FU’ ,FV’,FW’,FP’ are r.h.s. of (1.43)~(1.46), respectively.



2.4. Characteristics in three methods

Accuracy | Comput | Pressure | Scalability | Efficiency | Compatibi | Compatibi
Method ational | equation | in parallel in large lity with lity with
robust- computati scale semi- spectral
ness on computati | Lagrangia | method
on n scheme
AE Anelastic | Good 3D Depends | Depends | Good Good
approxi- Poisson | on elliptic | on elliptic
mation solver solver
HI-VI | Good Fair 3D Depends | Depends | Good Good
Helmholtz | on elliptic | on elliptic
solver solver
HE-VI | Good Fair 1D Good Good Sound Fair
Helmholtz waves

exist




4. Numerics of JIMA-NHM

Basic Equations

The governing basic equations of the model consist of the flux form
equations on the spherical curvilinear orthogonal coordinate.
Let m, and m, be the map factors in the & (x) and 7 (y) directions,

ds, :d—f, ds, :d—n, ds, = dz,
ml m2

V:iu+]v+EW,
ds, 1d¢&é ds, 1 dp

U=—= , V= = ,
dt m, dt dt  m, dt
ds, dz

W= =
dt dt

FAL1IB z=const O & o BEE R



Momentum equation is

e

& 26xV-Lvp+g+F
dt o,
where

V =im— + Jn—+k—
: —z B

d_0 d¢a dpo dzo 3 o 0
+ +MUu—+nvV—+w—,

dt ot dt oF  dt on  dtez et o0 on oz

dv. :du -dv =-dw di dj  dk

—=1—+ ]—+K u

dt dt dt o dt o dt o dt e

cdu =dv cdw oi oi oj _ dj ok ok
= + ] — k—+u(mu—+nV—)+v(mu—+nV—)+W(mu—+nV—)
dt dt dt o0& on ol 0




Change of unit vectors along each coordinates are

>

oi - o0 .,1. -1 o - 0 .1
— =i =) -k—,  —=im—(),
o0& on m am on o& n
ﬂ:ini(i), ﬂ:_imi E)_Ei,
o0& on m on o& 'n an
ok ;1 ok__z1
O am  0On an
where a is radius of earth.
Curvature term is
M:u(muﬂ+nvﬂ)+v(muﬂ+nvﬂ)+w(mu%+nv%)
o0& on ols 0 o0& on
> o ,1 o 1 > WU
=imnvu— (=) -v— () }+i—
{ an(m) 8§(n)} "

jmnuu-2 () +v-2 Gy Y g Y
on m o& n a a




Continuity equation is

dp
+WO
at  F

—

VW = (-2 + 0= + K2y Giu + v + kw)
O& on oz

ou 0j ok, _ov oi ok, ow
_m—+|m(V—+W—)+n—+Jn(u—+ )+

o0& o0& o0& on on on- o0z
ou o,1l, w oV 9, W oW
=m—+mnv—(—) + —+n—+mnu—(—) —+—
0 877 m-  a on ot n a oz

8W2W
n{jg( )+ 5;(”9} "



Conformal projections

Set n=m in the curvilinear orthogonal coordinates equations ,
and notate &, n by x, v,

d—U:Cor1 +Crv, —im§+ Dif,

dt Jo,
dv 1 :
— =Cor, +Crv, ——m@+ Dif,,
dt o,
dw 1 :
— = Cor, +Crv, L1 g + Dif,,
dt 1%/i
where
Cor1 = 2Q)sin pv — 2QC0OS @ COSCAAW
Cor2 = —202C0S @Sin CAAW — 2Q)Sin pu
Cor3 = 2€2C0S @ COSCAAU + 2€2C0S @ SiN CAAV
o ,1 o ,1 uw
Crv. =m>W{v— (=) —u—(=)}——
SR )=l

—m2fu Ly v Ly W
Crv,=m u{u@/(m) Va’k(m)}

u’ +w?
a

Crv3 =



1) Polar stereo projection
c=1,

" X 4+ macos@sin Al
_ p
(y} y —macos ¢ cosAA
p
1+singo0

ms=-———,
1+sing

],

-

{247 ]




2) Lambert-conformal projection

m :
(Xj ) X, +€a005gpsm CAA

m
yp—EaCOS(pCOSCA}t y

COS® .1, 1+SINQ, |
COS @, 1+sing

m=(

Normally, ¢,=n/6, ¢p,=mn/3




3) Mercator projection

c=0,
N X, +acos gpoA/l_
= 1+sing, |
y Yy, +acos ¢, In(———)
COS ¢
_ COS o,
CoSQ

Falp}

. 1]

.2

.1o)

e |



Flux form equation

Continuity equation was

do, 2@ Uy O N\ AW 20N

el {O,X(m)+éy(m)}+pO,,Z + prc (2.40)
where

d /7 0

—=—+m(U—+Vé)+Wé (2.41)
dt & X o 174

If we neglect the last term of |.h.s. of (2.40)by shallow assumption, we
obtain

99 @2 oDy 2 i@ U W @ O
0‘t+m(ué}(+véy)+wéz+pm{@((m)+@/(m)}+p0‘z
_ P 2O Py O PN O _

—d+m{é}((m)+@(m)}+&(p\N)— prc (2.42)



For arbitrary variable ¢, from (2.41)

pd¢ pﬂqﬁ pap N, pwﬁ¢ (2.44)
m* dt m’ o”t md’}( ma’y m* & |
From (2.42)
7/
LD g LN L L2 Lpreo (245
thus
pd¢15 o . pug,. I g, 1 O 3
vy ae ) B (m)+5y(m)+m2&(pw¢) 7 Prc (246)

or

pde_2J p¢ 0 PPy O NP O WP P
e {&(m)+@(m)}+ (5 F)-—Prc (247)



(2.31)~(2.33) become

é(ﬁ) + AdvU + ;ﬁz CrvU +CorVU + Dif U (2.48)
X

2Py 4 advy + P=crvy +CorV + Dif v (2.49)

Jt m oy

('OW) + AdvW +_(5p+ p9)=CrvW +CorW + Dif W (2.50)

Terms Adv.U, Adv.V, Adv.W:replace ¢by u, v, win
Terms Crv.U, Crv.V, CrvW , Cor.U, Cor.V, Cor.W:multiply po/m to the
terms of the equations in conformal projection



Prognostic equation for potential temperature is

49_ . apve-_2 . Dif o (2.51)

da A Cpﬂ'

where

O pub, | O pv0 o, pnl. 6 _ dpyym
ADV.H—[m{é}((m)+ (m)}+ (—)—=(Prc ét)]p

underlined term is divergence.

(2.52)



Pressure equation

From state equation

_ P Pcre,
p Rﬁm(po)
op__pad, 1 op

o e, ot C?ot

Here. C,, is the sound wave speed in case no liquid water

Combining continuity equation

9 e By @ o\ O
E R P At} “ (pw)= pre

Pressure equation Is
P e, il (2 L& -
ot X M- A m %4 0.




c) Time-splitting of advection term

In order to enhance the computational robustness, advection terms of
momentum and potential temperature are split at small time step

At the center of the Leapfrog time step, high-order advection terms are fully
evaluated with the flux correction, and then second-order components are
adjusted at each short time steps in the later half of the Leapfrog time
Integration

ADV = ADV (kt) — ADVL(kt) + ADVL®

large time step 24t
(ns-1)/2+1

T

Modified by lower order advection components
ADV (kt)
Advection terms are fully evaluated by higher order difference with flux correction
At = 40sec for 10km model; corresponds to At = 80 sec in RK2

ns-1

v

small time step
At

(
(
G
(



Time splitting of gravity waves

92‘+A‘[’ _07 ] Q .
—— (ADV@ — ADVLO + ADVLO") + — + dif .0
AT Cpﬂ-
o6
= ADVLO ~ ADVLE" +| = | (19)
T+AT T yé)
W W n 11 éID*+ g ZpﬂziBUOYT+AT
At mG 2 0z mC,_ m
— (ADVW — ADVLW + ADVLW ™ — RW)
+(1-0)—2—P". (20)
mC

m

The tendency term in (19) is given by a tentative time integration in the
cloud microphysical process.



Test of 3-D Linear Mountain waves

Uniform atmosphere with U=10m/s, N=0.02/s
Bell-shaped mountain h=100m. a=30km with horizontal resolution 10km

h
Z,(,y)= Y

a+ ()2 + ()
a a

b [ r cmwa -2 Ttm MADD AL GOT BT

{*

M‘
M

Cross-section of vertical velocity without time-splitting of advection.

Left) At=30sec, t=10 hrs. Contour interval is 0.5 cm/s.

Center) At=40sec. t=2 hrs. Contour interval islcm/s

Right) At=50sec, t=10 hrs. Contour interval is 0.5 cm/s. With time-splitting of advection.



Case of 9 April 2001, 0O6UTC initial

Gravity waves sometimes become unstable when an inversion layer
exists in strong wind environment.

Vertical cross-section of 3 hrs forecast of NHM with Ax=10km.

9 April 2001, 06UTC initial , At=40 sec.

Potential temperature and vertical wind.
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d) Divergence damping
Based on the idea of Wicker and Skamarock (1992),
while acts on the flux form total divergence
Ur+AT_Ur Of-Pr éGgGBPT
+ +
AT OX

- —(ADVU +RU)+ aﬁaH DIVT,
X

Ggﬁz*

Vr+Ar _Vr +0»-Pr+£2623pr

_ _(ADW +RV)+-2 & DIVT,
ay H

At N a
G20dz*
T+AT _ T B
W W N 11 O’P*Jr g 2pﬂ:iBUOY_(ADVW—RW)+Q(ZZD|VT
AT mG5 01 mCm m Oz

where
a,,=0.06* (4Ax)?/Az
az((kz):0.0S* (Az(kz))?/ At



e) Direct evaluation of buoyancy

The buoyancy term BUQY is defined by
1

2

BUOY EapGe O g+ (1—o)(p- p)gG} (24)

m

c=0: density perturbation, o=1: potential temperature perturbation
vertical momentum equation

dN+ 11 0’p+6 PZ:iBUOY—ADVW+RW.
A mGzoz* mC m

m

In case of =0, BUOY includes pressure perturbation, which has to be
treated implicitly.



Implicit treatment

Independent of o, pressure perturbation term is treated implicitly as

B
swi—— P9 pr_Lpyoy_(ADVW - RW)+@-0)- S P.  (2229)

m

The last term in r.h.s. is evaluated in short time step.
Upper and lower boundary condition of pressure equation is

o .9 d Py (2.239)

—+— 9 )P’— (ADVW —RW) + = {BUOY + (1- o)
m

mG 2 22 mC C

m m

To split gravity waves, diagnosis of density is required in each short time step.



Cloud Microphysics

Typical prognostic variables

— water vapor, cloud water, rain,
cloud ice, and graupel (Qv,
Qc, Qr, Qi, Qs, Qg)

— number density of cloud ice,
snow and graupel (Ni, Ns,

Ng)

Tetens’ formula for
saturated vapor pressure [hPa]

7.5xt

e.=6.11x1023"

Frevp

b4

water vapor

Qy
Fecend Fidsn
Fidep
FPifzc Pispl Pliacw A
cloud water < _ - cloud ice
Qc Pimit ai, Ni
Ps.sacw Ficns
Fsaci
¥ Psdep T
Foenr snow
Fracw Pgacw QS‘ Me Praci
Pag.sacw Pgacs .
Pg.iacw Pscng Fieng
S——3 Pg.racs Fgaci
Fs.sacr
A
< =
rain Fsmit graupel !
Qr _ Pgshr L Fagmit (g, Ng Pgdep
- 1 .
Fogacr | Pgfzr
Fiacr | Fg.sacr
Frorc Fspro Faprc



In bulk method, the size distribution function of water substance is

Bulk cloud microphysics

expressed by the inverse exponential function of the particle diameter D.

N(D) = N,e*°

Fall-out terminal velocity of
particle is given as a power

function of D by the

Stokes’

law in the form of

V(D) =aD"

Variable Size distribution Fall velocity Density
Qz(kg/kg) | Nz(D) (m~*) Udz(m/s) pz(kg/m?)
Nz(m~3)
br [ P00 1/2 3
Qr Nr(D) = Nroexp(—AD) | a,Drbr (£2) w=1 X 10
Nryg =8 X 108 ay = 842
b. =0.8
bs [po)1/2
Qs Ns(D) = Nspexp(—AD) asDs ( . ] ps =8.4 X 10
Ns rep =rp = Thum
(Nsgp = 1.8 X 10°) a, =17
by =0.5 Man = (4#}'3];:,:-3;
Da pg | 1/2 2
Qg Ng(D) = Ngoexp(~AD) | agDg" (£2) pe =3 X 10
Ng
(Ngg = 1.1 X 109) ag =124 rgp = rp = T pm
Qe mono , a.Debe pe = 1.0 X 103
: Gpllc 1/3 - T '
Di= (wprG ac =3 X 10
Ne=1 X 108m~3 be = 2.0
_ bi (o 0-35 N
Qi mono a; D (%‘1} p =15 X 10
) ) 1/3
Ni Di= (£2i)" a; =7 X 10? mip =1 X 10~ 12kg

b; =1.0




Bulk cloud microphysics

The mass-weighted mean velocity is obtained by

IZ,OWDN(D)N(D)dD ~ [D%aD’e™®dD  ar(4+b)

V = _ _
3.-1D b
ijWDgN(D)dD J.D e "“dD oA

Here I'(z) is the Gamma function

r'(z) = j:tz‘le‘tdt

By Euler’s partial integration, the Gamma function has the following
characteristic

(@)=t (-e)ydt=[-t* ™) | +(z-1)[ 1%t
=(z-DI'(z-1)
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