AvRDP verification considerations

Barbara Brown (NCAR, Boulder, USA; bgb@ucar.edu) With significant contributions from Peter Li and Herbert Puempel

> AvrRDP final meeting: Pretoria, South Africa 21 August 2019

Outline

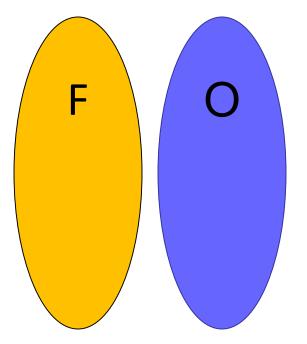
- Users of verification
- Good forecasts and bad forecasts... User-relevant verification
- Identifying verification methods for different forecasts and purposes
- Simplifying verification results (Score cards)
- Resources

Who are the users of verification information?

- Forecast developers
 - Calibrate and improve forecasts
- Air Traffic Managers
 - Determine the "usefulness" of products for decision-making
 - Based on information about forecast *quality* (calibration, skill)
 - Make decisions based on the forecast information, with known qualifications based on verification information
- Funders
 - Are the forecasts doing what they say they will do?
 - Should we invest more in their improvement?

<u>Note</u>: "forecasts" and "verification information" can pertain to <u>weather forecasts</u> or to weather information translated into <u>air traffic metrics</u>

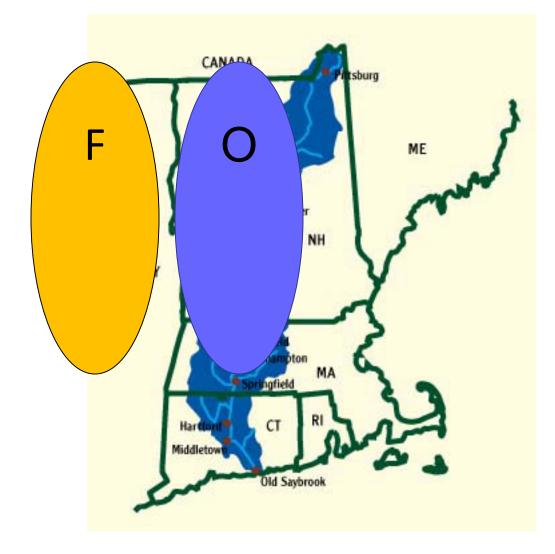
Good forecast or bad forecast?



Many verification approaches would say that this weather forecast of a significant weather area has NO skill and is very inaccurate.

Good forecast or Bad forecast?

For a water manager for this watershed, it's a pretty bad forecast...



Good forecast or Bad forecast? F **Flight Route** В A For a flow manager and the given route... This will give a good estimate of Different users have capacity reduction different **Different verification approaches** requirements! can measure different types of "goodness"

How can we evaluate this forecast in a meaningful way?

- As a weather forecast?
 - Traditional approach would indicate it has NO skill
 - *No overlap* between forecast and observed area
 - Alternative approaches: Spatial methods
 - <u>Neighborhood methods</u> => Forecast has some skill because it is in the "neighborhood" of the observed region

Ο

Flight Route

- <u>Distance methods</u> => Measure overall distance between the forecast and observed points
- <u>Object-based methods</u> => Answer meaningful (physical) questions such as
 - What is the *distance* between the forecast and observed areas (e.g., centroid difference)
 - Is the <u>area covered</u> by the forecast the same size as the area covered by the observed storm?
 - Is the *orientation* of the forecast correct?
 - ...

How can we evaluate this forecast in a meaningful way?

- As an ATM forecast (*translated* from the weather forecast)?
 - Estimate expected traffic flow/capacity (or delays etc.) if forecast is correct => <u>Translated forecast</u>
 - How many flights would be able to get through if the forecast is correct?

Flight Route

- How many delays are expected if the forecast is correct?
- Measure observed traffic flow/delays
 - Compare to expected flow
 - How well did the forecasted flow match the observed flow?
 - <u>Note</u>: Need to be able to take into account (and separate out) other factors that might lead to diversions, reduced flow, delays

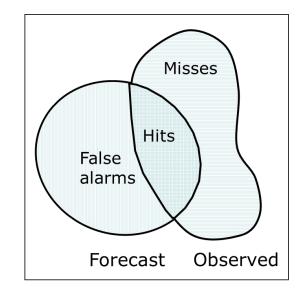
Forecast verification methods

Pertain to <u>any kind of forecast</u>

- Weather/climate
- Medicine
- Economics
- ATM impacts enroute/terminal etc.
- To evaluate weather forecasts or forecasts of ATM impacts requires good <u>observations</u> of the weather/impacts
 - Reliable measurements
 - Understanding of uncertainties
- Specific verification approaches are required ...
 - For different types of forecasts/observations
 - To answer different types of questions (Are the forecasts reliable? Do they have skill over other methods?)
- Identifying the availability of *observations* and the *questions* to be answered are *critical first steps*! (for both weather and impact forecast verification)

Categorical forecasts and observations

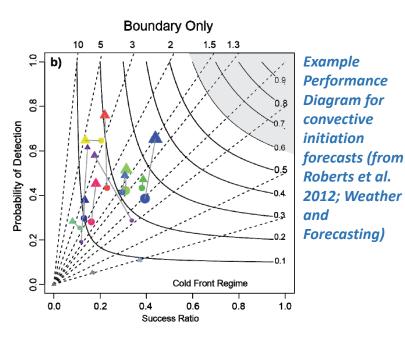
- Typically these are Yes/No forecasts
 - "Yes" an electric storm will impact an airport from time t0 to t1
 - "Yes/No" a route will be blocked at time t
- Also may be related to an "exceedance"; for example:
 - "Yes" the storm will sit over a runway for 3 hours or more
 - "Yes" more than X flights will be affected



Categorical forecast examples

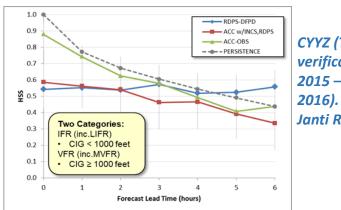
Categorical statistics include

- POD (Probability of Detection)
- FAR (False Alarm Ratio)
- CSI (Critical Success Index)
- ETS (Equitable Threat Score)
- HSS (Heidke Skill Score)

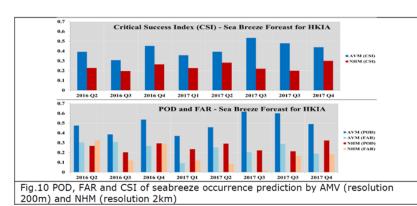


Can be applied to yes/no decision making

• Ex: Closing approach route due to convection



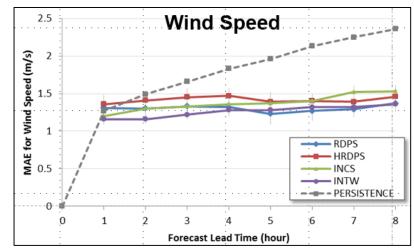
CYYZ (Toronto) verification; (Nov 2015 – Mar 2016). Credit: Janti Reid



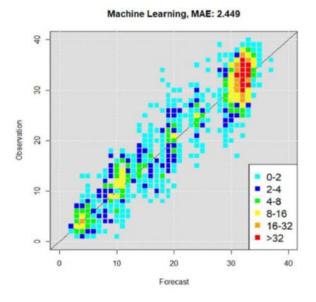
From HKO Final report for AVRDP (2019)

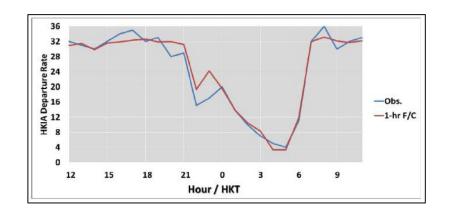
Continuous forecasts

- Comparison of continuous forecast and observed values (e.g., wind speed)
- Examples: Root Mean Squared Error (MSE), Mean Absolute Error (MAE), ME (Mean Error or Arithmetic Bias)
 - Note that scores are interrelated



CYYZ (Toronto) verification; (Nov 2015 – Mar 2016). Credit: Janti Reid





Departure Rate predictions From HKO Final report for AVRDP (2019)

Probabilistic forecasts

Accuracy

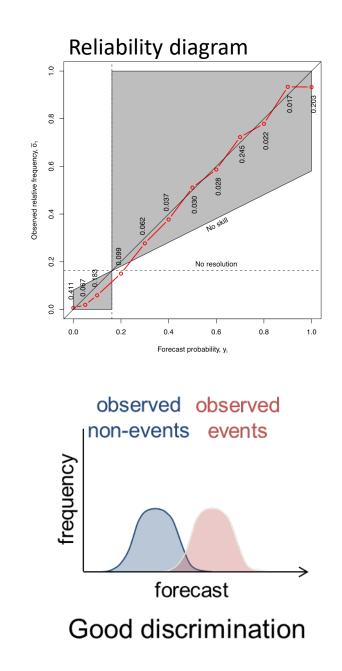
<u>Brier score</u>: Average of squared differences between forecast probability and occurrence / nonoccurrence of forecast event (like a MSE for probabilistic forecasts)

• Reliability

Measures whether the frequency of an event occurring matches the probability forecast

Discrimination

Measures how different the forecasts are for occurrences and non-occurrences of the forecast event

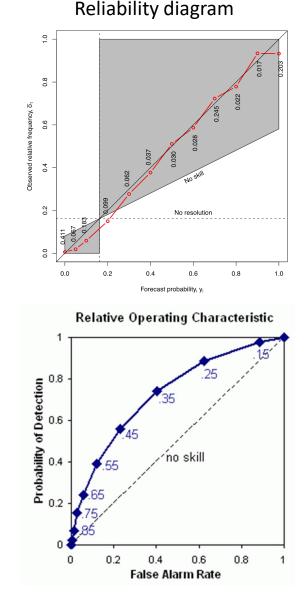


Recommended approaches for probability forecasts

A good combination of measures:

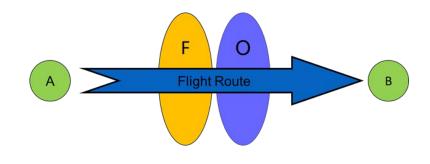
- <u>Reliability</u>: Does the "event" occur approximately as often as predicted?
- <u>Relative Operating</u> <u>Characteristic (ROC)</u>: How well does the forecast discriminate between events and nonevents?
 - Can be translated into a <u>potential</u> <u>cost-loss measure</u>
 - Ignores calibration/reliability

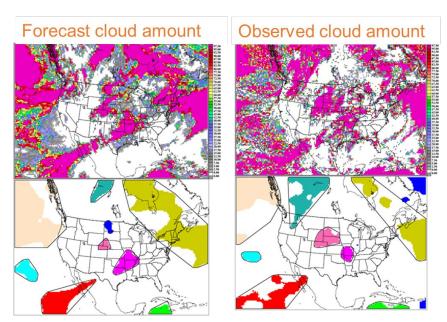
These two measures provide a "complete" evaluation of probabilistic (2-category) forecasts



Spatial approaches

- Provide the opportunity to evaluate characteristics of forecasts that are <u>directly</u> <u>relevant to users</u>
 - Mis-placement of convective weather
 - Areal coverage of hazardous weather
 - Intensity of storms
- Several categories of approaches
 - Object-based
 - Neighborhood
 - Scale separation
 - Distance
 - Field deformation
- These approaches have been applied in a variety of studies involving clouds, convection, etc. that are relevant for aviation





MODE object-based approach applied to forecast and observed cloud amount

Forecast Observation 8 3

Some displacement of all clusters

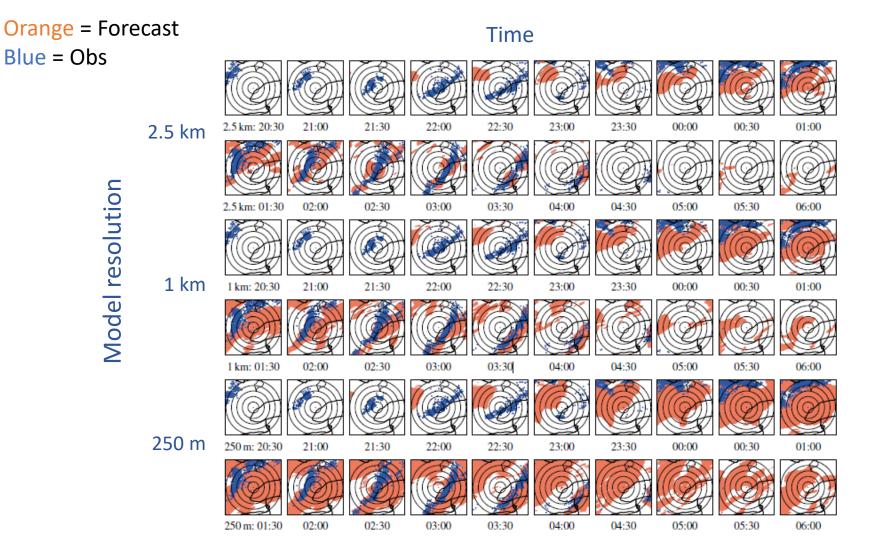
 Large area differences, for some objects

... Etc.

CLUS PAIR	CEN DIST	ANG DIFF	FCST AREA	OBS AREA	IN TER AREA	UNION AREA	SYMM DIFF	FCST INT 50	OBS INT 50	FCST INT 90	OBS INT 90	TOT INTR
1	8.53	10.08	689	816	504	1001	497	100.00	100.00	100.00	100.00	1.0000
2	6.18	10.69	131	138	87	182	95	100.00	100.00	100.00	100.00	1.0000
3	9.80	35.64	247	145	33	359	326	89.00	100.00	100.00	100.00	0.9411
4	4.69	51.94	299	130	121	308	187	100.00	100.00	100.00	100.00	0.9158
5	16.56	13.02	229	829	196	862	666	100.00	100.00	100.00	100.00	0.9018
6	3.47	19.33	81	305	81	305	224	100.00	100.00	100.00	100.00	0.8958
7	11.74	2.27	2366	1049	1001	2414	1413	100.00	100.00	100.00	100.00	0.9407
8	15.77	38.71	1921	11.57	773	2305	1532	100.00	100.00	100.00	100.00	0.9607

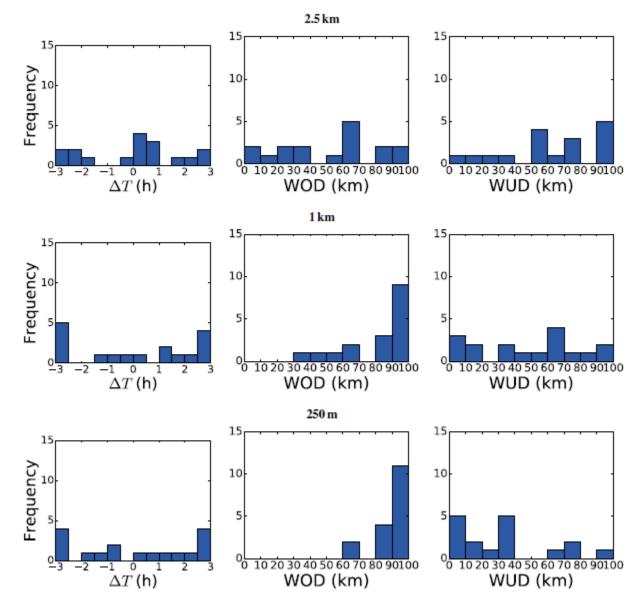
Cluster Object Information

Example: Spatio-temporal User-centric Distance for Forecast Verification (Brunet et al. 2018; MetZ); Lightning forecasts Measures errors in predicted distances to observed events



Summaries of example results (Brunet et al. spatial approach)

- WOD = Worst
 Overforecast
 Distance
- WUD = Worst Underforecast Distance



Simplifying verification information for decision making

- As noted frequently, the number of scores used for verification can be overwhelming and hard to understand
- Hence there is a need for
 - Simpler methods?
 - Combined scores (e.g., NWP or GO index)?
 - Score cards to summarize and clearly define important results

Example forecast display (CDG; credit S. Desbios)

Example TC verification scoring table (NCAR)

Fore	cast Hour	12	24	36	48	60	72	84	96	108	120
		699	649	582	516	455	407	369	327	290	266
	А	-1.3	-3.2	-5.8	-11.3	-14.7	-20.1	-25.0	-27.1	-41.4	-64.6
		-5%	-7%	-9%	-15%	-16%	-18%	-18%	-16%	-20%	-27%
		0.903	0.959	0.968	0.990	0.987	0.971	0.935	0.879	0.878	0.932
- [671	619	556	494	438	392	355	313	276	249
c l	•	-1.1	-4.3	-8.5	-11.6	-12.9	-16.1	-21.5	-27.6	-52.1	-84.2
asi	В	-4%	-10%	-14%	-15%	-14%	-14%	-16%	-17%	-28%	-40%
8		0.774	0.984	0.997	0.988	0.957	0.918	0.908	0.832	0.893	0.957
Atlantic Basin		686	638	569	504	445	400	359	317	282	260
tta	C	3.5	6.8	8.5	7.2	6.9	4.9	4.0	7.2	-8.1	-29.6
<	C	11%	12%	11%	8%	6%	4%	2%	4%	-3%	-11%
		0.999	0.999	0.995	0.833	0.748	0.426	0.236	0.337	0.270	0.683
1		688	640	571	506	449	404	363	319	285	259
	D	3.6	5.2	9.7	11.6	15.0	19.5	21.4	21.8	18.1	14.7
		11%	10%	13%	12%	12%	13%	12%	10%	7%	5%
		0.999	0.999	0.999	0.999	0.999	0.997	0.993	0.904	0.713	0.518
		421	392	339	287	244	205	170	134	109	87
	Δ	-1.1	1.7	5.9	12.0	10.9	6.2	-8.8	-28.5	-49.9	-87.0
	Α	-4%	4%	9%	13%	10%	5%	-6%	-16%	-25%	-40%
'n.		0.708	0.520	0.798	0.881	0.657	0.312	0.316	0.559	0.581	0.593
Eastern North Pacific Basin		409	382	329	282	239	202	169	140	114	89
^o	В	-1.4	-2.8	-6.0	-16.2	-30.2	-49.0	-72.6	-91.1	-113.2	-158.
gcit	0	-5%	-7%	-11%	-24%	-40%	-58%	-76%	-81%	-86%	-109%
ď		0.927	0.745	0.840	0.975	0.999	0.999	0.999	0.999	0.984	0.955
ŧ		419	388	337	289	244	205	169	137	110	86
ž	C	2.3	6.2	9.6	11	11.2	6.5	1.9	3.4	-3	-24.8
E	C	8%	12%	14%	12%	10%	5%	1%	2%	-1%	-9%
ste		0.946	0.99	0.99	0.933	0.769	0.377	0.086	0.106	0.069	0.394
ш		419	390	338	289	246	209	175	141	114	87
	Р	2.3	4.8	6.9	7.9	7.7	3.9	0.2	-4.5	-9.9	-26.7
	D	7%	10%	10%	9%	7%	3%	0%	-2%	-4%	-10%
		0.999	0.998	0.993	0.942	0.836	0.421	0.018	0.4	0.415	0.625

METViewer CAM Scorecard

for GFDLFV3 and HRRR

2018-04-30 00:00:00 - 2018-06-01 00:00:00

								Dail	y Don	nain					
			12 hr	14 hr	16 hr	18 hr	20 hr	22 hr	24 hr	26 hr	28 hr	30 hr	32 hr	34 hr	36 hr
		>=25.0	•	•			•		•	•	•	•			
		>=30.0	•	•	•		•		•	•	•	•			
Fraction Skill Score	Composite Reflectivity	>=35.0	•	•	•				•	•	•	•			
Traction Skill Score	Composite Reflectivity	>=40.0	•	•	•	•			•	*	•				
		>=45.0	•		*				•	•	•				
		>=50.0	•	•			•		•	•					
		>=25.0	•	•											
		>=30.0	•	•											
CSI	Composite Reflectivity	>=35.0	+	*											
Cal	Composite Reflectivity	>=40.0	•												
		>=45.0													
		>=50.0													

	GFDLFV3 is better than HRRR at the 99.9% significance level
*	GFDLFV3 is better than HRRR at the 99% significance level
	GFDLFV3 is better than HRRR at the 95% significance level
	No statistically significant difference between GFDLFV3 and HRRR
	GFDLFV3 is worse than HRRR at the 95% significance level
•	GFDLFV3 is worse than HRRR at the 99% significance level
¥	GFDLFV3 is worse than HRRR at the 99.9% significance level
	Not statistically relevant

From T. Jensen, 2018

Other factors to remember...

Stratification

- "Difficulty" of forecast (e.g., days with highly forced convection vs. other days)
- Location, Topography, Season, etc. (the standard stuff...)
- Observation uncertainty
 - A big issue for weather...
 - An even bigger issue for ATM impacts
- Reporting/presentation of results
 - Must be meaningful to users of the results will be different for different users (e.g., Air Traffic Managers vs. administrators)

Some comments from Herbert

- It's most important to address verification of *high-impact events*
- Verification information may need to be simplified to be readily understood by operators
- <u>Complex scores</u> (e.g., Brier, ROC) should only be used by service provider/developers generally not practical for operators
 - This may be addressed via specialized displays or summaries (e.g., via score cards or other displays)
 - These scores also may be translated to be useful for operators e.g., red/amber/green
- It is valuable and important to find clear connections between weather verification and operational impacts
- To be useful, ensembles must be calibrated
- It's important to understand and communicate predictability

Summary

- Choice of verification method is key to obtaining useful information about quality of
 - Weather forecasts
 - Weather forecasts translated to ATM impacts
- Verification methods should be selected to match the <u>type of forecast/observation</u> as well as the <u>questions</u> that are relevant for users of the forecasts
- *Intuitive displays and summaries* can make all the difference in usefulness of verification information!

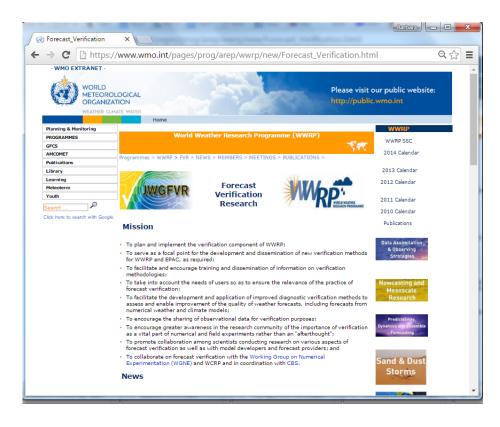
Where to go from here...

- Identify some specific weather and ATM events to evaluate based on data collection so far or in the future
 - Convective weather impacts on terminal aircraft acceptance rates
 - Convective impacts on traffic flow/capacity
- Identify questions to be answered and test
- Consider further how to translate product evaluations into user-relevant terms
 - Cost savings? Delay reductions? Etc.

Resources

Joint Working Group on Forecast Verification Research

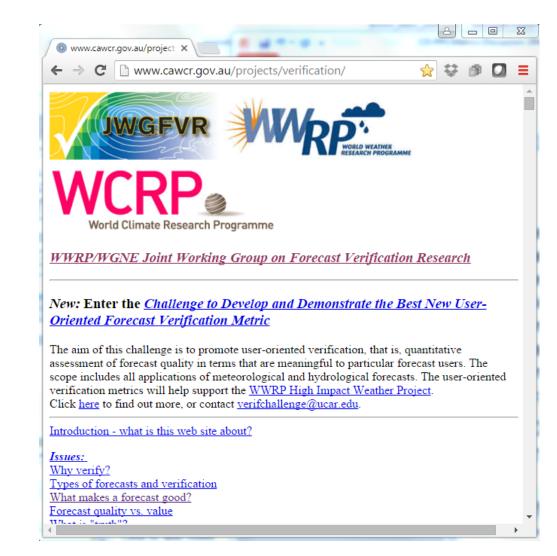
- Supports working groups and projects in WWRP and WGNE on verification topics
- Conducts and coordinates research on new verification methods (e.g., MesoVICT; https://www.ral.ucar.edu/ projects/icp/)
- Workshops and tutorials



Resources

Web page with many links to presentations, articles, etc. from international community

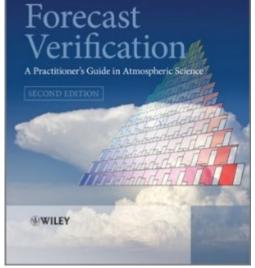
- FAQs
- Definitions
- Tools

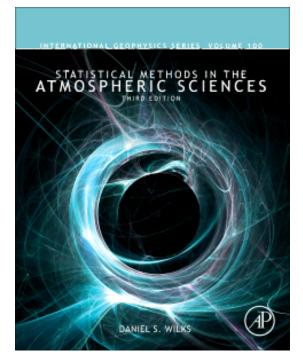


http://www.cawcr.gov.au/projects/verification/

Resources - Books

- Jolliffe and Stephenson (2012): *Forecast Verification: a practitioner's guide*, Wiley & Sons, 240 pp.
- Stanski, Burrows, Wilson (1989) Survey of Common Verification Methods in Meteorology (available at http://www.cawcr.gov.au/projects /verification/)
- Wilks (2011): *Statistical Methods in Atmospheric Science*, Academic press. (Updated chapter on Forecast Verification)





Resources

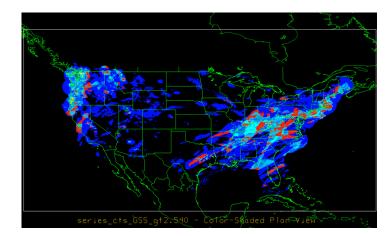
• Eric Gilleland's web page on spatial verification methods:

http://www.ral.ucar.edu/projects/icp/

- Verification Issues, Methods and FAQ web page: <u>http://www.cawcr.gov.au/projects/verification/</u>
- EUMETCAL learning module on verification methods <u>http://www.eumetcal.org/-learning-modules-</u>

Tools for Forecast Evaluation

- Model Evaluation Tools (MET)
 - Includes Traditional approaches, Spatial methods (MODE, Scale, Neighborhood), Confidence Intervals Ensemble methods
 - Supported to the community (freely available)



Spatial distribution of Gilbert Skill Score

- R libraries
 - Verification
 - Spatial-Vx
 - R is available at https://www.rproject.org/